Optimizing ORAM and Using It Efficiently for Secure Computation
نویسندگان
چکیده
Oblivious RAM (ORAM) allows a client to access her data on a remote server while hiding the access pattern (which locations she is accessing) from the server. Beyond its immediate utility in allowing private computation over a client’s outsourced data, ORAM also allows mutually distrustful parties to run secure-computations over their joint data with sublinear on-line complexity. In this work we revisit the tree-based ORAM of Shi et al. [20] and show how to optimize its performance as a stand-alone scheme, as well as its performance within higher level constructions. More specifically, we make several contributions: • We describe two optimizations to the tree-based ORAM protocol of Shi et al., one reducing the storage overhead of that protocol by an O(k) multiplicative factor, and another reducing its time complexity by an O(log k) multiplicative factor, where k is the security parameter. Our scheme also enjoys a much simpler and tighter analysis than the original protocol. • We describe a protocol for binary search over this ORAM construction, where the entire binary search operation is done in the same complexity as a single ORAM access (as opposed to log n accesses for the naive protocol). We then describe simple uses of this binary-search protocol for things like range queries and keyword search. • We show how the ORAM protocol itself and our binary-search protocol can be implemented efficiently as secure computation, using somewhat-homomorphic encryption. Since memory accesses by address (ORAM access) or by value (binary search) are basic and prevalent operations, we believe that these optimizations can be used to significantly speed-up many higher-level protocols for secure computation.
منابع مشابه
Three-Party ORAM for Secure Computation
An Oblivious RAM (ORAM) protocol [13] allows a client to retrieve N-th element of a data array D stored by the server s.t. the server learns no information about N. A related notion is that of an ORAM for Secure Computation (SC-ORAM) [17], which is a protocol that securely implements a RAM functionality, i.e. given a secret-sharing of both D and N, it computes a secret-sharing of D[N]. SC-ORAM ...
متن کاملUnified Oblivious-RAM: Improving Recursive ORAM with Locality and Pseudorandomness
Oblivious RAM (ORAM) is a cryptographic primitive that hides memory access patterns to untrusted storage. ORAM may be used in secure processors for encrypted computation and/or software protection. While recursive Path ORAM is currently the most practical ORAM for secure processors, it still incurs large performance and energy overhead and is the performance bottleneck of recently proposed secu...
متن کاملDesign space exploration and optimization of path oblivious RAM in secure processors Citation
Keeping user data private is a huge problem both in cloud computing and computation outsourcing. One paradigm to achieve data privacy is to use tamper-resistant processors, inside which users’ private data is decrypted and computed upon. These processors need to interact with untrusted external memory. Even if we encrypt all data that leaves the trusted processor, however, the address sequence ...
متن کاملSeparating indexes from data: a distributed scheme for secure database outsourcing
Database outsourcing is an idea to eliminate the burden of database management from organizations. Since data is a critical asset of organizations, preserving its privacy from outside adversary and untrusted server should be warranted. In this paper, we present a distributed scheme based on storing shares of data on different servers and separating indexes from data on a distinct server. Shamir...
متن کاملCHf-ORAM: A Constant Communication ORAM without Homomorphic Encryption
Recent techniques reduce ORAM communication complexity down to constant in the number of blocks N . However, they induce expensive homomorphic encryption on both the server and the client. In this paper, we present an alternative approach CH -ORAM. This ORAM features constant communication complexity without homomorphic encryption, in exchange for expanding the traditional ORAM setting from sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013